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IMAGE RETRIEVAL AND AUTHENTICATION
USING ENHANCED EXPECTATION
MAXIMIZATION (EEM)

CROSS-REFERENCE TO RELATE
APPLICATION

This Application is the National Stage filing under 35
U.S.C §371 of PCT Application Ser. No. PCT/US12/28377
filed on Mar. 8, 2012. The disclosure of the PCT Application
is hereby incorporated by reference in its entirety.

BACKGROUND

Unless otherwise indicated herein, the materials described
in this section are not prior art to the claims in this application
and are not admitted to be prior art by inclusion in this section.

With the proliferation of networking and data storage tech-
nologies, search and retrieval operations are becoming
increasingly complex and sought after. Search and retrieval of
images is a substantially different process than search for
textual data. In searching for images, commonly similarity is
used in obtaining results. A contrasting process involving
images is authentication, where uniqueness of an image may
be attempted to be proven.

One of the approaches employed in image authentication
and/or similarity determination is the expectation maximiza-
tion (EM) technique, which is an iterative process to compute
the Maximum Likelihood (ML) estimate in the presence of
missing or hidden data. In ML, estimation, model parameters
are attempted to be estimated for which the observed data are
the most likely. Each iteration of the EM technique may
include two processes: The E-step, and the M-step. In the
expectation, or E-step, the missing data may be estimated
given the observed data and current estimate of the model
parameters. This may be achieved using conditional expec-
tation. In the M-step, the likelihood function may be maxi-
mized under the assumption that the missing data are known.
The estimate of the missing data from the E-step may be used
in lieu of the actual missing data. Convergence may be
assured since the technique is guaranteed to increase the
likelihood at each iteration.

Employing the EM technique in image retrieval and
authentication has several shortcomings. For example, the
EM technique may converge to a local maximum, whereas
image data may include multiple local maxima. The EM
technique may also suffer from a singularity when the
denominator is zero or substantially close to zero. Moreover,
a computation time may be undesirably long before conver-
gence and a number of Gaussian models to be used in the
technique may be hard to determine.

SUMMARY

The present disclosure generally describes technologies
for employing an EEM technique in image retrieval and
authentication.

According to some example embodiments, a method for
employing an Enhanced Expectation Maximization (EEM)to
determine data uniqueness and similarity may include receiv-
ing data to be analyzed; employing a realization of uniform
distribution in an initialization of the EEM on the received
data to prevent convergence to a local maximum; employing
a positive perturbation scheme to avoid boundary overtlow;
generating a signature vector for the analyzed data; and
employing the signature vector to determine one of unique-
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2

ness and similarity of the analyzed data to other data based on
a similarity of the signature vector to signature vectors of the
other data.

According to other example embodiments, a computing
device for employing an Enhanced Expectation Maximiza-
tion (EEM) to determine data uniqueness and similarity may
include a memory configured to store instructions and a pro-
cessor coupled to the memory and configured to execute a
data processing application in conjunction with the instruc-
tions stored in the memory. The data processing application
may receive data to be analyzed; employ a realization of
uniform distribution in an initialization of the EEM on the
received data to prevent convergence to a local maximum;
employ a positive perturbation scheme to avoid boundary
overflow; generate a signature vector for the analyzed data;
and employ the signature vector to determine one of unique-
ness and similarity of the analyzed data to other data based on
a similarity of the signature vector to signature vectors of the
other data.

According to further example embodiments, a computer-
readable storage medium may have instructions stored
thereon for employing an Enhanced Expectation Maximiza-
tion (EEM) to determine data uniqueness and similarity. The
instructions may include receiving data to be analyzed;
employing a realization of uniform distribution in an initial-
ization of the EEM on the received data to prevent conver-
gence to a local maximum; employing a positive perturbation
scheme to avoid boundary overtlow; generating a signature
vector for the analyzed data; and employing the signature
vector to determine one of uniqueness and similarity of the
analyzed data to other data based on a similarity of the sig-
nature vector to signature vectors of the other data.

The foregoing summary is illustrative only and is not
intended to be in any way limiting. In addition to the illustra-
tive aspects, embodiments, and features described above, fur-
ther aspects, embodiments, and features will become appar-
ent by reference to the drawings and the following detailed
description.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features of this disclosure will
become more fully apparent from the following description
and appended claims, taken in conjunction with the accom-
panying drawings. Understanding that these drawings depict
only several embodiments in accordance with the disclosure
and are, therefore, not to be considered limiting of its scope,
the disclosure will be described with additional specificity
and detail through use of the accompanying drawings, in
which:

FIG. 1 illustrates an example system, where an EEM tech-
nique may be employed for image retrieval and authentica-
tion;

FIG. 2A illustrates a flow diagram of an example EEM
technique using samples;

FIG. 2B illustrates a flow diagram of an example EEM
technique using a histogram;

FIG. 3 illustrates an example five-level wavelet transform
to be used in an EEM technique;

FIG. 4 illustrates an example networked system for
employing an EEM technique in image retrieval and authen-
tication;

FIG. 5 illustrates a general purpose computing device,
which may be used to employ an EEM technique in image
retrieval and authentication;
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FIG. 6 is a flow diagram illustrating an example method
that may be performed by a computing device such as the
device in FIG. 5; and

FIG. 7 illustrates a block diagram of an example computer
program product, all arranged in accordance with at least
some embodiments described herein.

DETAILED DESCRIPTION

In the following detailed description, reference is made to
the accompanying drawings, which form a part hereof. In the
drawings, similar symbols typically identify similar compo-
nents, unless context dictates otherwise. The illustrative
embodiments described in the detailed description, drawings,
and claims are not meant to be limiting. Other embodiments
may be utilized, and other changes may be made, without
departing from the spirit or scope of the subject matter pre-
sented herein. It will be readily understood that the aspects of
the present disclosure, as generally described herein, and
illustrated in the Figures, can be arranged, substituted, com-
bined, separated, and designed in a wide variety of different
configurations, all of which are explicitly contemplated
herein.

This disclosure is generally drawn, inter alia, to methods,
apparatus, systems, devices, and/or computer program prod-
ucts related to employing an EEM technique in image
retrieval and authentication.

Briefly stated, technologies are presented for employing
enhanced expectation maximization (EEM) in image
retrieval and authentication. Using uniform distribution as an
initial condition, the EEM may converge iteratively to a glo-
bal optimality. If a realization of the uniform distribution is
used as the initial condition, the process may also be repeat-
able. In some examples, a positive perturbation scheme may
be used to avoid boundary overflow, often occurring with
conventional EM algorithms. To reduce computation time
and resource consumption, a histogram of one dimensional
Gaussian Mixture Model (GMM) with two components and
wavelet decomposition of an image may be employed.

FIG. 1 illustrates an example system, where an EEM tech-
nique may be employed for image retrieval and authentica-
tion, arranged in accordance with at least some embodiments
described herein.

As shown in a diagram 100 of FIG. 1, an Enhanced Expec-
tation Maximization (EEM) may be employed to determine
data uniqueness or similarity by an application such as an
image processing application 106. The data whose unique-
ness or similarity is determined may not be limited to image
data, but other data such as audio, video, or even textual data
may be processed using the principles described herein. In an
example scenario, the data to be analyzed may be received
through an input mechanism 102 such as an input device, a
data store, and so on. The received data may be subjected to an
iterative EEM process 104 by the image processing applica-
tion 106 and an output 108 such as a binary decision (e.g.,
“yes” or “no”), a likelihood of similarity or uniqueness, or
another metric result may be provided.

The iterative EEM process 104 may employ a realization of
uniform distribution in an initialization of the EEM on the
received data to prevent convergence to a local maximum, a
positive perturbation scheme to avoid boundary overflow, and
generate a signature vector for the analyzed data. The signa-
ture vector may be used to determine uniqueness or similarity
of'the analyzed data to other data based on a similarity of the
signature vector to signature vectors of the other data.

40
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FIG. 2A illustrates a flow diagram of an example EEM
technique using samples, arranged in accordance with at least
some embodiments described herein.

While EM technique is commonly used in similarity or
uniqueness determination, the EM technique and its various
improved versions still remain generally complicated and
may encounter calculation challenges. For example, the EM
technique may converge to a local maximum or may include
a singularity when the denominator is zero or very close to
zero. The technique may also take a long time before conver-
gence, and a number of components of Gaussian models to be
used may be difficult to determine.

In data retrieval and authentication, particularly image
data, two characteristics of an Enhanced Expectation Maxi-
mization (EEM) may be used as features. The characteristics
are uniqueness and similarity. The uniqueness may be deter-
mined by the features (or feature vectors) being different for
different images. The similarity may be determined by the
feature vectors of similar images being similar or close to
each other in feature vector space. In comparison, other
approaches such as a hash function may satisfy the unique-
ness requirement, but cannot satisfy the similarity require-
ment. Thus, an EEM technique according to some embodi-
ments described herein provides a mechanism for
determining uniqueness as well as similarity in one approach
while not having local maximum convergence, singularity, or
computation time challenges.

As depicted in FIG. 2, a diagram 200 includes an initial-
ization computation 210. By using a realization of uniform
distribution, local optima may be avoided, enabling the EEM
to converge to a global maximum. The uniform distribution
may be of maximum entropy among various distributions. A
priori conditional Probability Mass Function (PMF) of a
sample vector 214 may be computed in a computation 212
based on a partition function Q and a mean vector. A small
positivity quantity ee may be added at the computation 212.
The addition of the small positivity quantity (e.g., ee=1072°)
in the denominator (in a computation 216) may be referred to
as a Positive Perturbation Scheme. In the computation of
matrix inverse at the computation 216, the computation may
not have to stop because of division by zero (singularity),
guaranteeing reliable computation.

Referring back to the computation 212, the partition func-
tion Q for each vector may also be defined at this operation.
Following the computation 212, the sample vector 214 may
be introduced to a computation 218 along with the posteriori
PMF of the sample vector 214 computed at the computation
216 and the weight coefficients from the initialization com-
putation 210. At the computation 218, the priori probability of
the sample vector(s) 214, the mean vector(s), and the covari-
ance matrix may be computed. As discussed above, having
the small positivity quantity ee in the denominator may pre-
vent singularity. The sample vector 214 based EEM may
continue with a decision operation 220, where the priori
probability of the sample vector(s) 214, the mean vector(s),
and the covariance matrix may be tested for stability. If either
entity is not stable, the computation may iterate through the
computation 212 again. If stability is determined, the priori
probability of the sample vector(s) 214, the mean vector(s),
and the covariance matrix may be obtained for signature
vector comparison and similarity/uniqueness determination
at a computation 222.

In the computations of the diagram 200, following param-
eters and definitions are used:

L: number of Gaussian PMF, i=1, ..., L,

N: number of Samples (Pixels), j=1, ..., N,

Y, 214: sample vector,
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K: number of Features (Gray levels), k=1, . ..

P,: Priori probability i Pr,

M;: Mean Vector i,

2i: Covariance matrix,

w,;: Weight coefficient ik,

X Feature vector of sample vector Y,

h(X,): Histogram with feature X,,

q,(X;): Posteriori PMF for X,

p«X,): Conditional PMF,

Q;: partition function

q,(Y,): Posteriori PMF for'Y,

pAY,): Priori probability I Pr of sample vector

FIG. 2B illustrates a flow diagram of an example EEM
technique using a histogram, arranged in accordance with at
least some embodiments described herein.

In a system an EEM technique according to some embodi-
ments, the computation time may be reduced by working on
image histograms instead of on image samples simplifying
the computation substantially. In some examples, the histo-
gram of one dimensional Gaussian Mixture Model (GMM)
with two components of Gaussian models as well as multi-
level wavelet decomposition of the analyzed images may be
used to further optimize the computation. The multilevel
wavelet decomposition may involve additional parameters.
However, use of two Gaussian components may be sufficient
because the histogram of wavelet high-frequency sub ,-band
is known to obey the general Laplacian distribution of zero
mean.

As shown in FIG. 2A, a diagram 250 illustrates computa-
tions 230, 232, 236, 238, and 242 similar to those in the
diagram 200 of FIG. 2A. The parameters and definitions
listed above are also used in the computations of the diagram
250. The conditional PMF and the partition function Q for
each vector may be determined at the computation 232. Fea-
ture vectors X, and histograms h(X,) may be provided (234)
for the computations 232 and 238 in place of sample vectors
according to the process described in the diagram 250. The
posteriori PMF of the feature vector computed at the compu-
tation 236, the feature vectors X, and histograms h(X,), and
the weight coefficients from the initialization 230 may be
employed at the computation 238 to determine the priori
probability of the feature vector(s), the mean vector(s), and
the covariance matrix. At decision operation 240, a determi-
nation may be made whether results of the computation 238
are stable. If the results are determined to be stable, the
probability of the feature vector(s), the mean vector(s), and
the covariance matrix may be declared as the results of the
EEM computation at computation 242. If the results are not
stable yet, the process may be iterated returning to computa-
tion 232.

To determine the number of Gaussian models needed to be
used for a given image, multilevel discrete wavelet transforms
may be applied according to some examples (e.g., five-level
wavelet transform). The high-frequency wavelet sub-bands
obey generalized Laplacian distribution, which is centered at
zero. Thus, a small number of Gaussian distributions may be
used for each sub-band in order to simplify the computation
and achieve stability and efficiency. For example, two Gaus-
sian distributions may be sufficient for some example imple-
mentations.

Additionally, by using wavelet transform, one dimensional
Gaussian distribution may be employed instead of two or
three dimensional Gaussian distributions further simplifying
the EEM. Some example wavelet transforms that may be used
include CDF (2, 2) wavelet transform or Haar wavelet trans-
form. Of course, other transforms may also be employed. In
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image space, the described EEM technique may be applied to
monochrome images or color components such as HSV,
YCrCb, CMYK, or RGB.

Some of the symbols used in FIG. 2A and FIG. 2B and
parameters selected for those computations are shown in table
1 below.

TABLE 2
Symbols and meanings
Symbols Meanings
GMM Gaussian Mixture Model used here:
Poame=P 1 x Ny, 0%) + Py x Nz, 65°)
1/100 Number of iteration: r
P, Priori probability 1 (for Gaussian component 1)
Ly mean 1
o2 variance 1
P, Priori probability 2 (for component 2, P, =1 - P,)
s mean 2
052 variance 2
Jmax/1000 Likelihood: Jmax = sum(h * log,,()),
I = log; o, (p(x))™) = =, log 4(p(x)
G(dB) Goodness of fitting G = 10 «log;,(ee + A/ (ee + MSE));
where: A = (max(max(hgy ), max(h))?;
MSE = sum((hgy — h)*)/M; (h is original histogram, and
hgy is histogram by EM)
max{max(hyr ), max(h, 2
G 1010&0[ {max(hiorg) (hign )}
1 255 ) N )
ﬁkz::o( korg — Nigns)
T(second) Time consumed in operation

FIG. 3 illustrates an example five-level wavelet transform
to be used in an EEM technique, arranged in accordance with
at least some embodiments described herein.

To address the challenge of determining how many Gaus-
sian models should be used, multi-level discrete wavelet
transforms may be applied for a given image (or data set). In
some example implementations, five-level wavelet transform
as shown in a diagram 300 may be employed. The diagram
300 shows how an image may be divided into four segments
(HH1 HL1, LH1, LL1), then one of the segments further
divided (HH2, HL.2, LH2, L.L2), and so on until level five
(HHS, HL5, LHS, LLS) is reached. The high-frequency sub-
bands obey generalized Laplacian distribution, which is cen-
tered at zero. Consequently, a small number of Gaussian
distributions may be used for each sub-band in order to sim-
plity the computation and make the computation steady and
efficient. For example, in a system employing five-level
wavelet transform, two Gaussian distributions may be suffi-
cient.

Furthermore, through the utilization of wavelet transform
1-D Gaussian distribution may be used instead of 2-D or 3-D
Gaussian distribution further simplifying EEM computation.
One example wavelet transform that may be employed is
Haar wavelet transform. In some embodiments, parameters
such as mean and variance of GMM used to model image
wavelet sub-bands may be selected to serve as signature of an
image.

The marriage of multi-level wavelet decomposition and
effective EEM technique of GMM learning can provide a
platform, on which many statistical parameters are usable.
Such a platform with rich information and flexibility may
make it possible to use low-level processing for high-level
processing. Uniqueness and similarity properties of the sig-
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nature derived from some parameters of GMM may play a
substantial role in image retrieval/indexing, image authenti-
cation, as well as multimedia data retrieval, indexing, authen-
tication, and forensics.

FIG. 4 illustrates an example networked system for
employing an EEM technique in image retrieval and authen-
tication, arranged in accordance with at least some embodi-
ments described herein. While example embodiments are
discussed in image retrieval and authentication, an EEM
according to embodiments may be employed in a number of
other areas as well. Audio, video, or other forms of data
retrieval and authentication are some illustrative examples.

An application employing an EEM technique in image
retrieval and authentication may be a locally installed appli-
cation or software executed over one or more servers such as
a hosted service. As shown in a diagram 400, an example
hosted service or a cloud based application performing image
retrieval and authentication may be executed on servers 458
and communicate with client applications on individual com-
puting devices such as a smart phone 456, a laptop computer
454, or a desktop computer 452 (‘client devices’) through
network(s) 450.

Client applications such as browsers or other applications
executed on any of the client devices 452-456 may facilitate
communications with application(s) executed on the servers
458. The hosted service may use a realization of uniform
distribution in initialization of EEM algorithm on received
data to prevent convergence to a local maximum, use a posi-
tive perturbation scheme to avoid boundary overflow, gener-
ate a signature vector for the analyzed data, and use the
signature vector to determine uniqueness or similarity of the
analyzed data to other data. The hosted service may retrieve
relevant data (e.g., image data) from data store(s) 462 directly
or through a database server 460, and provide results to the
user(s) through the client devices 452-456.

Network(s) 460 may comprise any topology of servers,
clients, Internet service providers, and communication
media. A system according to embodiments may have a static
or dynamic topology. Network(s) 460 may include secure
networks such as an enterprise network, an unsecure network
such as a wireless open network, or the Internet. Network(s)
460 may also coordinate communication over other networks
such as Public Switched Telephone Network (PSTN) or cel-
Iular networks. Furthermore, the network(s) 460 may include
short range wireless networks such as Bluetooth or similar
ones. The network(s) 460 provide communication between
the nodes described herein. By way of example, and not
limitation, the network(s) 460 may include wireless media
such as acoustic, RF, infrared or other wireless media.

Many other configurations of computing devices, applica-
tions, data sources, and data distribution systems may be
employed to implement a hosted service for employing an
EEM technique in image retrieval and authentication. Fur-
thermore, the networked environments discussed in FIG. 4
are for illustration purposes only. Embodiments are not lim-
ited to the example applications, modules, or processes.

While example embodiments are described using specific
formulas, parameters, and computations, embodiments are
not limited to those. Example implementations may also
employ other formulas, parameters, computations, and so on
using the principles described herein.

FIG. 5 illustrates a general purpose computing device 500,
which may be used to employ an EEM technique in image
retrieval and authentication, arranged in accordance with at
least some embodiments described herein. For example, the
computing device 500 may be used as servers 458 of FIG. 4.
In an example basic configuration 502, the computing device
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500 may include one or more processors 504 and a system
memory 506. A memory bus 508 may be used for communi-
cating between the processor 504 and the system memory
506. The basic configuration 502 is illustrated in FIG. 5 by
those components within the inner dashed line.

Depending on the desired configuration, the processor 504
may be of any type, including but not limited to a micropro-
cessor (UP), a microcontroller (uC), a digital signal processor
(DSP), or any combination thereof. The processor 504 may
include one more levels of caching, such as a cache memory
512, a processor core 514, and registers 516. The example
processor core 514 may include an arithmetic logic unit
(ALU), a floating point unit (FPU), a digital signal processing
core (DSP Core), or any combination thereof. An example
memory controller 518 may also be used with the processor
504, or in some implementations the memory controller 518
may be an internal part of the processor 504.

Depending on the desired configuration, the system
memory 506 may be of any type including but not limited to
volatile memory (such as RAM), non-volatile memory (such
as ROM, flash memory, etc.) or any combination thereof. The
system memory 506 may include an operating system 520,
one or more applications 522, and program data 524. The
applications 522 may include an image processing applica-
tion, an image retrieval application, a search engine and simi-
lar ones, and employ an EEM module 526, which may
employ an EEM technique in image retrieval and authentica-
tion as described herein. The program data 524 may include,
among other data, control parameters 528, or the like, as
described herein.

The computing device 500 may have additional features or
functionality, and additional interfaces to facilitate commu-
nications between the basic configuration 502 and any
desired devices and interfaces. For example, a bus/interface
controller 530 may be used to facilitate communications
between the basic configuration 502 and one or more data
storage devices 532 via a storage interface bus 534. The data
storage devices 532 may be one or more removable storage
devices 536, one or more non-removable storage devices 538,
or a combination thereof. Examples of the removable storage
and the non-removable storage devices include magnetic disk
devices such as flexible disk drives and hard-disk drives
(HDD), optical disc drives such as compact disc (CD) drives
or digital versatile disc (DVD) drives, solid state drives
(SSD), and tape drives to name a few. Example computer
storage media may include volatile and nonvolatile, remov-
able and non-removable media implemented in any method
or technology for storage of information, such as computer
readable instructions, data structures, program modules, or
other data.

The system memory 506, the removable storage devices
536 and the non-removable storage devices 538 are examples
of computer storage media. Computer storage media
includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital ver-
satile discs (DVDs), solid state drives, or other optical stor-
age, magnetic cassettes, magnetic tape, magnetic disk storage
or other magnetic storage devices, or any other medium
which may be used to store the desired information and which
may be accessed by the computing device 500. Any such
computer storage media may be part of the computing device
500.

The computing device 500 may also include an interface
bus 540 for facilitating communication from various interface
devices (e.g., one or more output devices 542, one or more
peripheral interfaces 550, and one or more communication
devices 560) to the basic configuration 502 via the bus/inter-
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face controller 530. Some of the example output devices 542
include a graphics processing unit 544 and an audio process-
ing unit 546, which may be configured to communicate to
various external devices such as a display or speakers via one
or more A/V ports 548. One or more example peripheral
interfaces 550 may include a serial interface controller 554 or
a parallel interface controller 556, which may be configured
to communicate with external devices such as input devices
(e.g., keyboard, mouse, pen, voice input device, touch input
device, etc.) or other peripheral devices (e.g., printer, scanner,
etc.) via one or more I/O ports 558. An example communica-
tion device 560 includes a network controller 562, which may
be arranged to facilitate communications with one or more
other computing devices 566 over a network communication
link via one or more communication ports 564. The one or
more other computing devices 566 may include servers at a
datacenter, customer equipment, and comparable devices.

The network communication link may be one example of a
communication media. Communication media may typically
be embodied by computer readable instructions, data struc-
tures, program modules, or other data in a modulated data
signal, such as a carrier wave or other transport mechanism,
and may include any information delivery media. A “modu-
lated data signal” may be a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limi-
tation, communication media may include wired media such
as a wired network or direct-wired connection, and wireless
media such as acoustic, radio frequency (RF), microwave,
infrared (IR) and other wireless media. The term computer
readable media as used herein may include both storage
media and communication media.

The computing device 500 may be implemented as a part of
a general purpose or specialized server, mainframe, or similar
computer that includes any of the above functions. The com-
puting device 500 may also be implemented as a personal
computer including both laptop computer and non-laptop
computer configurations.

Example embodiments may also include methods for
maintaining application performances upon transfer between
cloud servers. These methods can be implemented in any
number of ways, including the structures described herein.
One such way may be by machine operations, of devices of
the type described in the present disclosure. Another optional
way may be for one or more of the individual operations of the
methods to be performed in conjunction with one or more
human operators performing some of the operations while
other operations may be performed by machines. These
human operators need not be collocated with each other, but
each can be only with a machine that performs a portion of the
program. In other examples, the human interaction can be
automated such as by pre-selected criteria that may be
machine automated.

FIG. 6 is a flow diagram illustrating an example method
that may be performed by a computing device such as the
device 500 in FIG. 5, arranged in accordance with at least
some embodiments described herein. Example methods may
include one or more operations, functions or actions as illus-
trated by one or more of blocks 622, 624, 626, 628, and/or
630. The operations described in the blocks 622 through 630
may also be stored as computer-executable instructions in a
computer-readable medium such as a computer-readable
medium 620 of a computing device 610.

An example process for employing an EEM technique in
image retrieval and authentication may begin with block 622.
“RECEIVE DATA TO BE ANALYZED?”, where data to be
analyzed using the EEM technique may be received at a
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computation application or module such as the EEM module
526 of the computing device 500 in FIG. 5.

Block 622 may be followed by block 624, “USE REAL-
IZATION OF UNIFORM DISTRIBUTION IN INITIAL-
IZATION OF EEM ALGORITHM ON THE RECEIVED
DATA TO PREVENT CONVERGENCE TO A LOCAL
MAXIMUM?”, where the EEM module 526 may initialize the
EEM process on the received data. The EEM module 526 may
use a realization of uniform distribution to prevent conver-
gence to a local maximum.

Block 624 may be followed by block 626, “USE POSI-
TIVE PERTURBATION SCHEME TO AVOID BOUND-
ARY OVERFLOW?”, where the EEM module 526 may
employ a positive perturbation scheme to avoid a boundary
overflow, and thereby a singularity encounter in the compu-
tation.

Block 626 may be followed by block 628, “GENERATE
SIGNATURE VECTOR FOR THE ANALYZED DATA”,
where a signature vector may be generated for the analyzed
data. One or more parameters of the GMM of image wavelet
subbands may be selected as the signature vector. The
selected parameters may be, for example, a mean and a vari-
ance of the GMM.

Block 628 may be followed by optional block 630, “USE
THE SIGNATURE VECTOR TO DETERMINE UNIQUE-
NESS OR SIMILARITY OF THE ANALYZED DATA TO
OTHER DATA”, where the EEM module 526 may determine
similarity of two sets of image data of uniqueness of a set of
image data using their respective signature vectors and a
Euclidian distance between the signature vectors.

The blocks included in the above described process are for
illustration purposes. Employing an EEM technique in image
retrieval and authentication may be implemented by similar
processes with fewer or additional blocks. In some examples,
the blocks may be performed in a different order. In some
other examples, various blocks may be eliminated. In still
other examples, various blocks may be divided into additional
blocks, or combined together into fewer blocks.

FIG. 7 illustrates a block diagram of an example computer
program product, arranged in accordance with at least some
embodiments described herein.

In some examples, as shown in FIG. 7, the computer pro-
gram product 700 may include a signal bearing medium 702
that may also include one or more machine readable instruc-
tions 704 that, when executed by, for example, a processor,
may provide the functionality described herein. Thus, for
example, referring to the processor 504 in FIG. 5, the EEM
module 526 may undertake one or more of the tasks shown in
FIG. 7 in response to the instructions 704 conveyed to the
processor 504 by the medium 702 to perform actions associ-
ated with maintaining application performances upon trans-
fer between cloud servers as described herein. Some of those
instructions may include, for example, instructions for using
realization of uniform distribution in initialization of EEM
algorithm on received data to prevent convergence to a local
maximum; using positive perturbation scheme to avoid
boundary overflow; generating signature vector for the ana-
lyzed data; and using the signature vector to determine
uniqueness or similarity of the analyzed data to other data
according to some embodiments described herein.

In some implementations, the signal bearing medium 702
depicted in FIG. 7 may encompass a computer-readable
medium 706, such as, but not limited to, a hard disk drive, a
solid state drive, a Compact Disc (CD), a Digital Versatile
Disc (DVD), a digital tape, memory, etc. In some implemen-
tations, the signal bearing medium 702 may encompass a
recordable medium 708, such as, but not limited to, memory,
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read/write (R/'W) CDs, R/'W DVDs, etc. In some implemen-
tations, the signal bearing medium 702 may encompass a
communications medium 710, such as, but not limited to, a
digital and/or an analog communication medium (e.g., a fiber
optic cable, a waveguide, a wired communications link, a
wireless communication link, etc.). Thus, for example, the
program product 700 may be conveyed to one or more mod-
ules of the processor 504 by an RF signal bearing medium,
where the signal bearing medium 702 is conveyed by the
wireless communications medium 710 (e.g., a wireless com-
munications medium conforming with the IEEE 802.11 stan-
dard).

According to some example embodiments, a method for
employing an Enhanced Expectation Maximization (EEM)to
determine data uniqueness and similarity may include receiv-
ing data to be analyzed; employing a realization of uniform
distribution in an initialization of the EEM on the received
data to prevent convergence to a local maximum; employing
a positive perturbation scheme to avoid boundary overtlow:
generating a signature vector for the analyzed data; and
employing the signature vector to determine one of unique-
ness and similarity of the analyzed data to other data based on
a similarity of the signature vector to signature vectors of the
other data.

According to other examples, the analyzed data may be
image data. The method may further include employing a
histogram of one dimensional Gaussian Mixture Model
(GMM) for the image data, employing two components of the
GMM for histogram, applying a multilevel discrete wavelet
transform to determine a number of the GMMSs to be used,
and/or selecting one or more parameters of the GMM of
image wavelet subbands as the signature vector. The selected
parameters may be a mean and a variance of the GMM. The
method may also include determining the uniqueness of the
image data based on a Euclidian distance between two signa-
ture vectors being greater than a predefined limit or determin-
ing the similarity of the image data based on a Euclidian
distance between two signature vectors being less than
another predefined limit.

According to further examples, a size of the signature
vector may be 128 bits or less. The method may also include
employing the similarity of the image data for one of image
retrieval and indexing and employing the uniqueness of the
image data for authentication. The method may yet include
generating the signature vector by applying the EEM to color
components of the image data. A color space of the image data
may include one of HSV, YCrCb, CMYK, and RGB.

According to yet other examples, the positive perturbation
scheme may include addition of a denominator factor in
goodness calculation of a histogram for the image data. The
goodness of the histogram for the image data may be deter-
mined by: G=10 log,,{ee+A/(ee+MSE)}, where A={Max
[Max(h, ),Max(h)]}* with h and h, being histogram values
before and after application of the EEM, MSE=S(h,-h)*/M
with M being a number of occurrence values in the histogram,
and ee is a very small positive perturbation value. The ee may
be about 107°. And, the method may further include gener-
ating the signature vector by applying the EEM to one of
video data and audio data.

According to other example embodiments, a computing
device for employing an Enhanced Expectation Maximiza-
tion (EEM) to determine data uniqueness and similarity may
include a memory configured to store instructions and a pro-
cessor coupled to the memory and configured to execute a
data processing application in conjunction with the instruc-
tions stored in the memory. The data processing application
may receive data to be analyzed; employ a realization of
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uniform distribution in an initialization of the EEM on the
received data to prevent convergence to a local maximum;
employ a positive perturbation scheme to avoid boundary
overflow; generate a signature vector for the analyzed data;
and employ the signature vector to determine one of unique-
ness and similarity of the analyzed data to other data based on
a similarity of the signature vector to signature vectors of the
other data.

According to some examples, the analyzed data may be
image data. The data processing application may further
employ a histogram of one dimensional Gaussian Mixture
Model (GMM) for the image data, employ two components
of'the GMM for histogram, apply a multilevel discrete wave-
let transform to determine a number of the GMMs to be used,
and/or select one or more parameters of the GMM of image
wavelet subbands as the signature vector. The selected param-
eters may be a mean and a variance of the GMM. The data
processing application may determine the uniqueness of the
image data based on a Euclidian distance between two signa-
ture vectors being greater than a predefined limit or determine
the similarity of the image data based on a Euclidian distance
between two signature vectors being less than another pre-
defined limit.

According other examples, a size of the signature vector
may be 128 bits or less. The data processing application may
also employ the similarity of the image data for one of image
retrieval and indexing, employ the uniqueness of the image
data for authentication, and/or generate the signature vector
by applying the EEM to color components of the image data.
A color space of the image data may include one of HSV,
YCrCb, CMYK, and RGB. The positive perturbation scheme
may include addition of a denominator factor in goodness
calculation of a histogram for the image data.

According to yet other examples, the goodness of the his-
togram for the image data may be determined by: G=10
log,,{ee+A/(ee+MSE)}, where A={Max[Max(h,),
Max(h)]}* with h and h, being histogram values before and
after application of the EEM, MSE=S(h,-h)*M with M
being a number of occurrence values in the histogram, and ee
is a very small positive perturbation value. The ee may be
about 1072°. The data processing application may also gen-
erate the signature vector by applying the EEM to one of
video data and audio data.

According to further example embodiments, a computer-
readable storage medium may have instructions stored
thereon for employing an Enhanced Expectation Maximiza-
tion (EEM) to determine data uniqueness and similarity. The
instructions may include receiving data to be analyzed;
employing a realization of uniform distribution in an initial-
ization of the EEM on the received data to prevent conver-
gence to a local maximum; employing a positive perturbation
scheme to avoid boundary overtlow; generating a signature
vector for the analyzed data: and employing the signature
vector to determine one of uniqueness and similarity of the
analyzed data to other data based on a similarity of the sig-
nature vector to signature vectors of the other data.

According to some examples, the analyzed data may be
image data. The instructions may further include employing a
histogram of one dimensional Gaussian Mixture Model
(GMM) for the image data, employing two components of the
GMM for histogram, applying a multilevel discrete wavelet
transform to determine a number of the GMMs to be used,
and/or selecting one or more parameters of the GMM of
image wavelet subbands as the signature vector. The selected
parameters may be a mean and a variance of the GMM.

According to other examples, the instructions may also
include determining the uniqueness of the image data based
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on a Fuclidian distance between two signature vectors being
greater than a predefined limit or determining the similarity of
the image data based on a FEuclidian distance between two
signature vectors being less than another predefined limit. A
size of the signature vector may be 128 bits or less. The
instructions may further include employing the similarity of
the image data for one of image retrieval and indexing,
employing the uniqueness of the image data for authentica-
tion, and/or generating the signature vector by applying the
EEM to color components of the image data. A color space of
the image data may include one of HSV, YCrCb, CMYK, and
RGB.

According to further examples, the positive perturbation
scheme may include addition of a denominator factor in
goodness calculation of a histogram for the image data. The
goodness of the histogram for the image data may be deter-
mined by: G=10 log,,{ee+A/(ee+MSE)}, where A={Max
[Max(h, ),Max(h)]}* with h and h, being histogram values
before and after application of the EEM, MSE=S(h,-h)*/M
with M being a number of occurrence values in the histogram,
and ee is a very small positive perturbation value. The ee may
be about 1072°. And, the instructions may include generating
the signature vector by applying the EEM to one of video data
and audio data.

There is little distinction left between hardware and soft-
ware implementations of aspects of systems; the use of hard-
ware or software is generally (but not always, in thatin certain
contexts the choice between hardware and software may
become significant) a design choice representing cost vs.
efficiency tradeoffs. There are various vehicles by which pro-
cesses and/or systems and/or other technologies described
herein may be eftected (e.g., hardware, software, and/or firm-
ware), and that the preferred vehicle will vary with the context
in which the processes and/or systems and/or other technolo-
gies are deployed. For example, if an implementer determines
that speed and accuracy are paramount, the implementer may
opt for a mainly hardware and/or firmware vehicle; if flex-
ibility is paramount, the implementer may opt for a mainly
software implementation; or, yet again alternatively, the
implementer may opt for some combination of hardware,
software, and/or firmware.

The foregoing detailed description has set forth various
embodiments of the devices and/or processes via the use of
block diagrams, flowcharts, and/or examples. Insofar as such
block diagrams, flowcharts, and/or examples contain one or
more functions and/or operations, it will be understood by
those within the art that each function and/or operation within
such block diagrams, flowcharts, or examples may be imple-
mented, individually and/or collectively, by a wide range of
hardware, software, firmware, or virtually any combination
thereof. In one embodiment, several portions of the subject
matter described herein may be implemented via Application
Specific Integrated Circuits (ASICs), Field Programmable
Gate Arrays (FPGAs), digital signal processors (DSPs), or
other integrated formats. However, those skilled in the art will
recognize that some aspects of the embodiments disclosed
herein, in whole or in part, may be equivalently implemented
in integrated circuits, as one or more computer programs
running on one or more computers (e.g., as one or more
programs running on one or more computer systems), as one
Or more programs running on one or more processors (e.g., as
one or more programs running on one or more Microproces-
sors), as firmware, or as virtually any combination thereof,
and that designing the circuitry and/or writing the code for the
software and/or firmware would be well within the skill of
one of skill in the art in light of this disclosure.
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The present disclosure is not to be limited in terms of the
particular embodiments described in this application, which
are intended as illustrations of various aspects. Many modi-
fications and variations can be made without departing from
its spirit and scope, as will be apparent to those skilled in the
art. Functionally equivalent methods and apparatuses within
the scope of the disclosure, in addition to those enumerated
herein, will be apparent to those skilled in the art from the
foregoing descriptions. Such modifications and variations are
intended to fall within the scope of the appended claims. The
present disclosure is to be limited only by the terms of the
appended claims, along with the full scope of equivalents to
which such claims are entitled. It is to be understood that this
disclosure is not limited to particular methods, reagents, com-
pounds compositions or biological systems, which can, of
course, vary. It is also to be understood that the terminology
used herein is for the purpose of describing particular
embodiments only, and is not intended to be limiting.

In addition, those skilled in the art will appreciate that the
mechanisms of the subject matter described herein are
capable of being distributed as a program product in a variety
of forms, and that an illustrative embodiment of the subject
matter described herein applies regardless of the particular
type of signal bearing medium used to actually carry out the
distribution. Examples of a signal bearing medium include,
but are not limited to, the following: a recordable type
medium such as a floppy disk , a hard disk drive, a Compact
Disc (CD), a Digital Versatile Disc (DVD), a digital tape, a
computer memory, a solid state drive, etc.; and a transmission
type medium such as a digital and/or an analog communica-
tion medium (e.g., a fiber optic cable, a waveguide, a wired
communications link, a wireless communication link, etc.).

Those skilled in the art will recognize that it is common
within the art to describe devices and/or processes in the
fashion set forth herein, and thereafter use engineering prac-
tices to integrate such described devices and/or processes into
data processing systems. That is, at least a portion of the
devices and/or processes described herein may be integrated
into a data processing system via a reasonable amount of
experimentation. Those having skill in the art will recognize
that a typical data processing system generally includes one
or more of a system unit housing, a video display device, a
memory such as volatile and non-volatile memory, proces-
sors such as microprocessors and digital signal processors,
computational entities such as operating systems, drivers,
graphical user interfaces, and applications programs, one or
more interaction devices, such as a touch pad or screen,
and/or control systems including feedback loops and control
motors (e.g., feedback for sensing position and/or velocity of
gantry systems; control motors for moving and/or adjusting
components and/or quantities).

A typical data processing system may be implemented
utilizing any suitable commercially available components,
such as those typically found in data computing/communica-
tion and/or network computing/communication systems. The
herein described subject matter sometimes illustrates differ-
ent components contained within, or connected with, difter-
ent other components. It is to be understood that such
depicted architectures are merely exemplary, and that in fact
many other architectures may be implemented which achieve
the same functionality. In a conceptual sense, any arrange-
ment of components to achieve the same functionality is
effectively “associated” such that the desired functionality is
achieved. Hence, any two components herein combined to
achieve a particular functionality may be seen as “associated
with” each other such that the desired functionality is
achieved, irrespective of architectures or intermediate com-
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ponents. Likewise, any two components so associated may
also be viewed as being “operably connected”, or “operably
coupled”, to each other to achieve the desired functionality,
and any two components capable of being so associated may
also be viewed as being “operably couplable”, to each otherto
achieve the desired functionality. Specific examples of oper-
ably couplable include but are not limited to physically con-
nectable and/or physically interacting components and/or
wirelessly interactable and/or wirelessly interacting compo-
nents and/or logically interacting and/or logically inter-
actable components.

With respect to the use of substantially any plural and/or
singular terms herein, those having skill in the art can trans-
late from the plural to the singular and/or from the singular to
the plural as is appropriate to the context and/or application.
The various singular/plural permutations may be expressly
set forth herein for sake of clarity.

It will be understood by those within the art that, in general,
terms used herein, and especially in the appended claims (e.g.
bodies of the appended claims) are generally intended as
“open” terms (e.g., the term “including” should be interpreted
as “including but not limited to,” the term “having” should be
interpreted as “having at least,” the term “includes” should be
interpreted as “includes but is not limited to,” etc.). It will be
further understood by those within the art that if a specific
number of an introduced claim recitation is intended, such an
intent will be explicitly recited in the claim, and in the absence
of'such recitation no such intent is present. For example, as an
aid to understanding, the following appended claims may
contain usage of the introductory phrases “at least one” and
“one or more” to introduce claim recitations. However, the
use of such phrases should not be construed to imply that the
introduction of a claim recitation by the indefinite articles “a”
or “an” limits any particular claim containing such introduced
claim recitation to embodiments containing only one such
recitation, even when the same claim includes the introduc-
tory phrases “one or more” or “at least one” and indefinite
articles such as “a” or “an” (e.g., “a” and/or “an” should be
interpreted to mean “at least one” or “one or more”); the same
holds true for the use of definite articles used to introduce
claim recitations. In addition, even if a specific number of an
introduced claim recitation is explicitly recited, those skilled
in the art will recognize that such recitation should be inter-
preted to mean at least the recited number (e.g., the bare
recitation of “two recitations,” without other modifiers,
means at least two recitations, or two or more recitations).

Furthermore, in those instances where a convention analo-
gous to “at least one of A, B, and C, etc.” is used, in general
such a construction is intended in the sense one having skill in
the art would understand the convention (e.g., “a system
having at least one of A, B, and C” would include but not be
limited to systems that have A alone, B alone, C alone, A and
B together, A and C together, B and C together, and/or A, B,
and C together, etc.). It will be further understood by those
within the art that virtually any disjunctive word and/or
phrase presenting two or more alternative terms, whether in
the description, claims, or drawings, should be understood to
contemplate the possibilities of including one of the terms,
either of the terms, or both terms. For example, the phrase “A
or B” will be understood to include the possibilities of “A” or
“B” or “A and B.”

In addition, where features or aspects of the disclosure are
described in terms of Markush groups, those skilled in the art
will recognize that the disclosure is also thereby described in
terms of any individual member or subgroup of members of
the Markush group.
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As will be understood by one skilled in the art, for any and
all purposes, such as in terms of providing a written descrip-
tion, all ranges disclosed herein also encompass any and all
possible subranges and combinations of subranges thereof.
Any listed range can be easily recognized as sufficiently
describing and enabling the same range being broken down
into at least equal halves, thirds, quarters, fifths, tenths, etc. As
a non-limiting example, each range discussed herein can be
readily broken down into a lower third, middle third and
upper third, etc. As will also be understood by one skilled in
the art all language such as “up to,” “at least,” “greater than,”
“less than,” and the like include the number recited and refer
to ranges which can be subsequently broken down into sub-
ranges as discussed above. Finally, as will be understood by
one skilled in the art, a range includes each individual mem-
ber. Thus, for example, a group having 1-3 cells refers to
groups having 1, 2, or 3 cells. Similarly, a group having 1-5
cells refers to groups having 1, 2, 3, 4, or 5 cells, and so forth.

While various aspects and embodiments have been dis-
closed herein, other aspects and embodiments will be appar-
ent to those skilled in the art. The various aspects and embodi-
ments disclosed herein are for purposes of illustration and are
not intended to be limiting, with the true scope and spirit
being indicated by the following claims.

What is claimed is:

1. A method for employing an Enhanced Expectation
Maximization (EEM) to determine data uniqueness and simi-
larity, the method comprising:

receiving data to be analyzed;

employing, a realization of uniform distribution in an ini-

tialization of the EEM on the received data to prevent a
convergence to a local maximum and to allow another
convergence to a global maximum;

employing a positive perturbation scheme to avoid bound-

ary overtlow;

generating a signature vector for the analyzed data and

employing the signature vector to determine one of unique-

ness and similarity of the analyzed data to other data
based on a similarity of the signature vector to signature
vectors of the other data.

2. The method according to claim 1, wherein the analyzed
data is image data.

3. The method according to claim further comprising

employing a histogram of one dimensional Gaussian Mix-

ture Model (GMM) for the image data.
4. The method according to claim 3, further comprising
employing two components of the GM M for histogram.
5. The method according to claim 3, further comprising:
applying a multilevel discrete wavelet transform to deter-
mine as number of the GMMs to be used; and

selecting one or more parameters of the GMM of image
wavelet subbands as the signature vector wherein the
selected parameters are a mean and a variance of the
GMM.

6. The method according to claim 2, further comprising

determining the uniqueness of the image data based on a
Euclidian distance between two signature vectors being
greater than a predefined limit.

7. The method according to claim 2, further comprising

determining the similarity of the image data based on a

Euclidian distance between two signature vectors being
less than another predefined limit.

8. The method according to claim 2, wherein a size of the
signature vector is 128 bits or less.

9. The method according to claim 2, further comprising

employing the similarity of the image data for one of image

retrieval and indexing; and

29 <
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employing the uniqueness of the image data for authenti-

cation.

10. The method according to claim 2, further comprising

generating the signature vector by applying the EEM to

color components of the image data, wherein a color
space of the image data includes one of HSV, YCrCb,
CMYK, and RGB.

11. The method according to claim 2, wherein the positive
perturbation scheme includes addition of a denominator fac-
tor in goodness calculation of a histogram for the image data
and the goodness of the histogram for the image data is
determined by:

G=10 log, ,{ee+A/(ee+MSE)}, where

A={Max[Max(h, ),Max(h)]}? with h and h, being histo-

gram values before and after application of the EEM,

MSE=S(h,-h)*M with M being a number of occurrence

values in the histogram, and

ee is a very small positive perturbation value.

12. The method according to claim 11, wherein ee is about
1 0—20.

13. The method according to claim 1, further comprising

generating the signature vector by applying the EEM to one

of video data and audio data.

14. A computing device for employing an Enhanced
Expectation Maximization (EEM) to determine data unique-
ness and similarity, the computing device comprising:

a memory configured to store instructions; and

a processor coupled to the memory and configured to

execute a data processing application in conjunction
with the instructions stored in the memory, wherein the
data processing application is configured to:

receive data to be analyzed;

employ a realization of uniform distribution in an initial-

ization of the EEM on the received data to prevent con-
vergence to a local maximum and to allow another con-
vergence to a global maximum;

employ a positive perturbation scheme to avoid boundary

overflow;

generate a signature vector fir the analyzed data; and

employ the signature vector to determine one of unique-

ness and similarity of the analyzed data to other data
based on a similarity of the signature vector to signature
vectors of the other data.

15. The computing device according to claim 14, wherein
the analyzed data is image data.
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16. The computing device according to claim 15, wherein
the data processing application is further configured to

employ a histogram of one dimensional Gaussian Mixture

Model (GMM) for the image data.
17. The computing device according to claim 16, wherein
the data processing application is further configured to
apply a multilevel discrete wavelet transform to determine
a number of the GMMs to be used; and

select one or more parameters of the GMM of image wave-
let subbands as the signature vector wherein the selected
parameters are a meal and a variance of the GMM.

18. The computing device according to claim 14, wherein
the data processing application is further configured to

generate the signature vector by applying the EEM to one

of video data and audio data.

19. A non-transitory computer-readable storage medium
having instructions stored thereon for employing an
Enhanced Expectation Maximization (EEM) to determine
data uniqueness and similarity, the instructions comprising;

receiving, data to be analyzed;

employing a realization of uniform distribution in an ini-

tialization of the EEM on the received data to prevent a
convergence to a local maximum and to allow another
convergence to a global maximum;

employing, a positive perturbation scheme to avoid bound-

ary overtlow;

generating a signature vector for the analyzed data; and

employing the signature vector to determine one of unique-

ness and similarity of the analyzed data to other data
based on a similarity of the signature vector to signature
vectors of the other data.

20. The non-transitory computer-readable storage medium
according to claim 19, wherein the analyzed data is image
data.

21. The non-transitory computer-readable storage medium
according to claim 20, wherein the positive perturbation
scheme includes addition of a denominator factor in goodness
calculation of a histogram for the image data.

22. The non-transitory computer-readable storage medium
according to claim 21, wherein the goodness of the histogram
for the image data is determined by:

G=10 log, ,{ee+A/(ee+MSE)}, where

A={Max[Max(h,)Max(h)]}* with h and h, being histo-

gram values before and after application of the EEM,

MSE=S(h,-h)*M with M being a number of occurrence

values in the histogram, and

ee is a very small positive perturbation value.

23. The non-transitory computer-readable storage medium
according to claim 22, wherein ee is about 1072°.

#* #* #* #* #*
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